Copied to
clipboard

G = C42.229D6order 192 = 26·3

49th non-split extension by C42 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.229D6, (C4×D4)⋊19S3, (D4×C12)⋊21C2, (S3×C42)⋊5C2, C4⋊C4.285D6, C4.D1248C2, D6.2(C4○D4), (C4×Dic6)⋊33C2, (C2×D4).218D6, C23.9D654C2, D63D4.14C2, C4.44(C4○D12), (C2×C6).101C24, D6⋊C4.99C22, C22⋊C4.114D6, C4.Dic646C2, (C22×C4).228D6, C12.310(C4○D4), C23.12D632C2, (C4×C12).156C22, (C2×C12).161C23, (C6×D4).261C22, C23.26D68C2, C23.8D650C2, C4.137(D42S3), C4⋊Dic3.300C22, C23.108(C22×S3), (C22×C6).171C23, C22.126(S3×C23), Dic3⋊C4.112C22, (C22×S3).174C23, (C22×C12).110C22, C34(C23.36C23), (C4×Dic3).293C22, (C2×Dic6).288C22, (C2×Dic3).208C23, C6.D4.106C22, (C4×C3⋊D4)⋊5C2, C2.24(S3×C4○D4), C6.141(C2×C4○D4), C2.50(C2×C4○D12), C2.23(C2×D42S3), (S3×C2×C4).293C22, (C3×C4⋊C4).330C22, (C2×C4).161(C22×S3), (C2×C3⋊D4).115C22, (C3×C22⋊C4).125C22, SmallGroup(192,1116)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.229D6
C1C3C6C2×C6C22×S3S3×C2×C4S3×C42 — C42.229D6
C3C2×C6 — C42.229D6
C1C2×C4C4×D4

Generators and relations for C42.229D6
 G = < a,b,c,d | a4=b4=c6=1, d2=a2, ab=ba, cac-1=dad-1=a-1b2, bc=cb, bd=db, dcd-1=a2c-1 >

Subgroups: 520 in 234 conjugacy classes, 101 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, Dic6, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C2×C42, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C422C2, C4×Dic3, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, D6⋊C4, C6.D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×Dic6, S3×C2×C4, C2×C3⋊D4, C22×C12, C6×D4, C23.36C23, C4×Dic6, S3×C42, C23.8D6, C23.9D6, C4.Dic6, C4.D12, C23.26D6, C4×C3⋊D4, C23.12D6, D63D4, D4×C12, C42.229D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, C4○D12, D42S3, S3×C23, C23.36C23, C2×C4○D12, C2×D42S3, S3×C4○D4, C42.229D6

Smallest permutation representation of C42.229D6
On 96 points
Generators in S96
(1 64 19 80)(2 68 20 54)(3 66 21 82)(4 70 22 50)(5 62 23 84)(6 72 24 52)(7 53 29 67)(8 81 30 65)(9 49 25 69)(10 83 26 61)(11 51 27 71)(12 79 28 63)(13 33 86 47)(14 55 87 39)(15 35 88 43)(16 57 89 41)(17 31 90 45)(18 59 85 37)(32 94 46 74)(34 96 48 76)(36 92 44 78)(38 75 60 95)(40 77 56 91)(42 73 58 93)
(1 40 7 35)(2 41 8 36)(3 42 9 31)(4 37 10 32)(5 38 11 33)(6 39 12 34)(13 84 95 71)(14 79 96 72)(15 80 91 67)(16 81 92 68)(17 82 93 69)(18 83 94 70)(19 56 29 43)(20 57 30 44)(21 58 25 45)(22 59 26 46)(23 60 27 47)(24 55 28 48)(49 90 66 73)(50 85 61 74)(51 86 62 75)(52 87 63 76)(53 88 64 77)(54 89 65 78)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 6 19 24)(2 23 20 5)(3 4 21 22)(7 12 29 28)(8 27 30 11)(9 10 25 26)(13 16 86 89)(14 88 87 15)(17 18 90 85)(31 32 45 46)(33 36 47 44)(34 43 48 35)(37 58 59 42)(38 41 60 57)(39 56 55 40)(49 50 69 70)(51 54 71 68)(52 67 72 53)(61 82 83 66)(62 65 84 81)(63 80 79 64)(73 74 93 94)(75 78 95 92)(76 91 96 77)

G:=sub<Sym(96)| (1,64,19,80)(2,68,20,54)(3,66,21,82)(4,70,22,50)(5,62,23,84)(6,72,24,52)(7,53,29,67)(8,81,30,65)(9,49,25,69)(10,83,26,61)(11,51,27,71)(12,79,28,63)(13,33,86,47)(14,55,87,39)(15,35,88,43)(16,57,89,41)(17,31,90,45)(18,59,85,37)(32,94,46,74)(34,96,48,76)(36,92,44,78)(38,75,60,95)(40,77,56,91)(42,73,58,93), (1,40,7,35)(2,41,8,36)(3,42,9,31)(4,37,10,32)(5,38,11,33)(6,39,12,34)(13,84,95,71)(14,79,96,72)(15,80,91,67)(16,81,92,68)(17,82,93,69)(18,83,94,70)(19,56,29,43)(20,57,30,44)(21,58,25,45)(22,59,26,46)(23,60,27,47)(24,55,28,48)(49,90,66,73)(50,85,61,74)(51,86,62,75)(52,87,63,76)(53,88,64,77)(54,89,65,78), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,6,19,24)(2,23,20,5)(3,4,21,22)(7,12,29,28)(8,27,30,11)(9,10,25,26)(13,16,86,89)(14,88,87,15)(17,18,90,85)(31,32,45,46)(33,36,47,44)(34,43,48,35)(37,58,59,42)(38,41,60,57)(39,56,55,40)(49,50,69,70)(51,54,71,68)(52,67,72,53)(61,82,83,66)(62,65,84,81)(63,80,79,64)(73,74,93,94)(75,78,95,92)(76,91,96,77)>;

G:=Group( (1,64,19,80)(2,68,20,54)(3,66,21,82)(4,70,22,50)(5,62,23,84)(6,72,24,52)(7,53,29,67)(8,81,30,65)(9,49,25,69)(10,83,26,61)(11,51,27,71)(12,79,28,63)(13,33,86,47)(14,55,87,39)(15,35,88,43)(16,57,89,41)(17,31,90,45)(18,59,85,37)(32,94,46,74)(34,96,48,76)(36,92,44,78)(38,75,60,95)(40,77,56,91)(42,73,58,93), (1,40,7,35)(2,41,8,36)(3,42,9,31)(4,37,10,32)(5,38,11,33)(6,39,12,34)(13,84,95,71)(14,79,96,72)(15,80,91,67)(16,81,92,68)(17,82,93,69)(18,83,94,70)(19,56,29,43)(20,57,30,44)(21,58,25,45)(22,59,26,46)(23,60,27,47)(24,55,28,48)(49,90,66,73)(50,85,61,74)(51,86,62,75)(52,87,63,76)(53,88,64,77)(54,89,65,78), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,6,19,24)(2,23,20,5)(3,4,21,22)(7,12,29,28)(8,27,30,11)(9,10,25,26)(13,16,86,89)(14,88,87,15)(17,18,90,85)(31,32,45,46)(33,36,47,44)(34,43,48,35)(37,58,59,42)(38,41,60,57)(39,56,55,40)(49,50,69,70)(51,54,71,68)(52,67,72,53)(61,82,83,66)(62,65,84,81)(63,80,79,64)(73,74,93,94)(75,78,95,92)(76,91,96,77) );

G=PermutationGroup([[(1,64,19,80),(2,68,20,54),(3,66,21,82),(4,70,22,50),(5,62,23,84),(6,72,24,52),(7,53,29,67),(8,81,30,65),(9,49,25,69),(10,83,26,61),(11,51,27,71),(12,79,28,63),(13,33,86,47),(14,55,87,39),(15,35,88,43),(16,57,89,41),(17,31,90,45),(18,59,85,37),(32,94,46,74),(34,96,48,76),(36,92,44,78),(38,75,60,95),(40,77,56,91),(42,73,58,93)], [(1,40,7,35),(2,41,8,36),(3,42,9,31),(4,37,10,32),(5,38,11,33),(6,39,12,34),(13,84,95,71),(14,79,96,72),(15,80,91,67),(16,81,92,68),(17,82,93,69),(18,83,94,70),(19,56,29,43),(20,57,30,44),(21,58,25,45),(22,59,26,46),(23,60,27,47),(24,55,28,48),(49,90,66,73),(50,85,61,74),(51,86,62,75),(52,87,63,76),(53,88,64,77),(54,89,65,78)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,6,19,24),(2,23,20,5),(3,4,21,22),(7,12,29,28),(8,27,30,11),(9,10,25,26),(13,16,86,89),(14,88,87,15),(17,18,90,85),(31,32,45,46),(33,36,47,44),(34,43,48,35),(37,58,59,42),(38,41,60,57),(39,56,55,40),(49,50,69,70),(51,54,71,68),(52,67,72,53),(61,82,83,66),(62,65,84,81),(63,80,79,64),(73,74,93,94),(75,78,95,92),(76,91,96,77)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H4I4J4K···4P4Q4R4S4T6A6B6C6D6E6F6G12A12B12C12D12E···12L
order12222222344444444444···4444466666661212121212···12
size11114466211112222446···612121212222444422224···4

48 irreducible representations

dim11111111111122222222244
type++++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6D6D6C4○D4C4○D4C4○D12D42S3S3×C4○D4
kernelC42.229D6C4×Dic6S3×C42C23.8D6C23.9D6C4.Dic6C4.D12C23.26D6C4×C3⋊D4C23.12D6D63D4D4×C12C4×D4C42C22⋊C4C4⋊C4C22×C4C2×D4C12D6C4C4C2
# reps11122112211111212184822

Matrix representation of C42.229D6 in GL6(𝔽13)

1200000
0120000
008000
000800
0000911
000014
,
100000
010000
005000
000500
000080
000008
,
12120000
100000
006300
0010700
000063
0000107
,
12120000
010000
0071000
008600
000063
0000107

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,9,1,0,0,0,0,11,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[12,1,0,0,0,0,12,0,0,0,0,0,0,0,6,10,0,0,0,0,3,7,0,0,0,0,0,0,6,10,0,0,0,0,3,7],[12,0,0,0,0,0,12,1,0,0,0,0,0,0,7,8,0,0,0,0,10,6,0,0,0,0,0,0,6,10,0,0,0,0,3,7] >;

C42.229D6 in GAP, Magma, Sage, TeX

C_4^2._{229}D_6
% in TeX

G:=Group("C4^2.229D6");
// GroupNames label

G:=SmallGroup(192,1116);
// by ID

G=gap.SmallGroup(192,1116);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,100,1123,794,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=1,d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1*b^2,b*c=c*b,b*d=d*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
×
𝔽